AP Thermodynamic Homework (condensed)

1994

$2 \operatorname{H}_2 \operatorname{S}(g) + \operatorname{SO}_2(g) \rightarrow 3 \operatorname{S}(s) + 2 \operatorname{H}_2 \operatorname{O}(g)$

At 298 K, the standard enthalpy change, ΔH° for the reaction represented above is -145 kilojoules.

- (a) Predict the sign of the standard entropy change, ΔS° , for the reaction. Explain the basis for your prediction.
- (b) At 298 K, the forward reaction (*i.e.*, toward the right) is spontaneous. What change, if any, would occur in the value of ΔG° for this reaction as the temperature is increased? Explain your reasoning using thermodynamic principles.
- (c) What change, if any, would occur in the value of the equilibrium constant, K_{eq} , for the situation described in (b)? Explain your reasoning.
- (d) The absolute temperature at which the forward reaction becomes <u>nonspontaneous</u> can be predicted. Write the equation that is used to make the prediction. Why does this equation predict only an approximate value for the temperature?

1999

Answer the following questions in terms of thermodynamic principles and concepts of kinetic molecular theory.

(a) Consider the reaction represented below, which is spontaneous at 298 K.

 $CO_2(g) + 2 NH_3(g) \rightarrow CO(NH_2)_2(s) + H_2O(l); \Delta H^{\circ}_{298} = -134 \text{ kJ}$

- (i) For the reaction, indicate whether the standard entropy change, ΔS°_{298} , is positive, or negative, or zero. Justify your answer.
- (ii) Which factor, the change in enthalpy, ΔH°_{298} , or the change in entropy, ΔS°_{298} , provides the principal driving force for the reaction at 298 K? Explain.
- (iii) For the reaction, how is the value of the standard free energy change, ΔG° , affected by an increase in temperature? Explain.
- (b) Some reactions that are predicted by their sign of ΔG° to be spontaneous at room temperature do not proceed at a measurable rate at room temperature.
 - (i) Account for this apparent contradiction.
 - (ii) A suitable catalyst increases the rate of such a reaction. What effect does the catalyst have on ΔG° for the reaction? Explain.

Answer the following questions that relate to the chemistry of nitrogen.

(a) Two nitrogen atoms combine to form a nitrogen molecule, as represented by the following equation. $2 N(g) \rightarrow N_2(g)$

Using the table of average bond energies below, determine the enthalpy change, ΔH , for the reaction.

Bond	Average Bond Energy (kJ mol ⁻¹)
N – N	160
N = N	420
$\mathbf{N} \equiv \mathbf{N}$	950

(b) The reaction between nitrogen and hydrogen to form ammonia is represented below.

 $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g) \qquad \Delta H^\circ = -92.2 \text{ kJ}$

Predict the sign of the standard entropy change, ΔS° , for the reaction. Justify your answer.

- (c) The value of ΔG° for the reaction represented in part (b) is negative at low temperatures but positive at high temperatures. Explain.
- (d) When $N_2(g)$ and $H_2(g)$ are placed in a sealed container at a low temperature, no measurable amount of $NH_3(g)$ is produced. Explain.

2003